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Application of carbon nanotubes (CNTSs) to various electronic  (a)-0.02(-0.33:-0.01) eV (b)-3.51(-5.82:4.82) eV (c)-2.03(-3.12:-2.37) eV
devices such as field emission displays, gas sensors, and nanotrans- 9036)
istors have been hampered by the difficulties in control of the (+0.74)0)

electronic properties that are determined by the chifalityd 250 ..-‘-510-23?3 (828 (+0,05

)
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diameter of carbon nanotubes. One way to overcome these @& ‘00 O wﬁggp-zO(;g.gSB) {01'_1313 9-0.11)

difficulties is to modify the electronic properties of CNTs by Q &g O @O'Q'O QO‘_{E %'O'O'O‘O%

posttreatment after synthesis. Functionalization of a single-wall Q@ HQ P P o
carbon nanotube (SWNT) wall by atomic hydrogdransforms Q@ 9Q H9 &‘JQO &) &O %) g %

o0 OO0

metallic tubes to semiconducting orfeand fluorination of the dod 0o %QO'OOC@ FoCo
SWNT walls can also alter the electronic structures significahtly.
These approaches, however, often degrade the atomic structures ® oxygen () carbon

of SWNTs? A selective etching process may become another rigure 1. Adsorption of a C@ molecule on (a) armchair edge and (b,c)
alternative to select nanotubes that have appropriate electroniczigzag edge. The dark and gray balls indicate the oxygen and carbon atoms,
properties. While oxidative etching of CNT edge can be utilized respectively. All bond lengths are in units of A. The Mulliken excess charges
for purification of CNTs from other carbonaceous partidles, ©f the oxygen and carbon atoms are shown in parentheses in units of

. . . . . ' electron. The adsorption energies are shown in the figure from SCC-DFTB-
selection of CNTs with appropriate electronic properties by this (LDA:GGA).

method is difficult because of similar etching rates for nanotubes

with different chiralities. _ ~ 4.82)eV, as shown in Figure 1b. Two carbon atoms at the zigzag
In this communication we propose that selective etching with edge are stabilized by saturating the dangling bonds. The carbon
CO, may provide a route to SWNTSs of specific chirality. Theoretical ~ atom of the adsorbent G®ecomes less positive in Mulliken excess
calculations were done on the supercells of (5,5) and (10,0) charge ¢-0.58) than that of an ambient GOK0.74) molecule. This
nanotubes, using a self-consistent charge-density-functional-base¢.5pon atom forms a strong bond with the carbon atom at the tube
tight-binding (SCC-DFTB) methddand local atomic orbital basis  gqge. The adsorbed G@nolecule forms a pentagon at the seat
DF calculations within local-density-approximation (LDA) and  sjte minimizing its distortion energy. Note that one of the CO bond
generalized gradient approxmatlon (GGA), as implemented N Jength is 1.52 A, which is longer than the other one (1.19 A) and
DMol® code? Ten and eight carbon layers along the tube axis therefore expected to be a route for CO desorption which will be
(zdirection) were used for armchair and zigzag tubes, respectively. yiscyssed later. We also find another stable configuration at a zigzag
Open-ended edges were chosen to see the adsorption effect, ang ;o edge, where the carbon atom in Casorbent is located

the bottom dangling bonds were saturated by hydrogen atoms to,ard, as shown in Figure 1c. Two dangling bonds were saturated
minimize the eige effeé¢tWe define the adsorption energy of by two oxygen atoms symmetrically by forming a hexagon. The
molecules a&ag = Ew(gas+ CNT) — Ei(gas)— Ea(CNT), where  gpyqy Mulliken excess charger0.05) of the carbon atom at the
E s the total energy of a given system. Atoms were fully relaxed ,ysorhent Coindicates that the exposed carbon atom at the top
by the conjugate gradient method in the SCC-DFTB calculations ,,qqeqqes unpaired electrons, that is it holds almost four electrons.
except for the bott_om two carbon Iaygrs and a hydrogen layer. More The adsorption energy in this case becom@s03 (-3.12:—2.37)
accurate calculations were done with the LDA and GGA when o, "\ hich is smaller than those in the previous case (Figure 1b).

necessary. From these calculations, we clearly see that adsorption of CO

We in.vestiga.ted adsorption of G@holecules at various sites in molecules on zigzag and armchair tube edges is highly selective.
armchair and zigzag tube edges. Only one weakly bound state of The high selectivity in the adsorption of G@olecule on tube

Cr:]Oz molecule V\;as_ fcIJurtl)d a(taéhe ser']at sﬂg 0{:?” arnlchrill_l:;dge deSp'teedges of different structures can be used to control the electronic
the presence of triple bondsas shown in Figure 1a. states properties of SWNTs. When the SWNT powder containing both

?:t the arrlr;_cha.lr e(rj]ge_ do r:pt mt_c:rr]act Wgh th?. molecular sgslztes of armchair and zigzag nanotubes is exposed t@ 43, chemisorp-
O, resulting in physisorption with an adsorption energy ok tion occurs preferentially on zigzag tube edges. Heat treatment of

(;0'33?0'012;\/ f;om .SCC'?FbTB ((;‘DA:GGA)hca:CUIat'Oﬁ' Thtf] ; SWNT powder under CQambient at an appropriate temperature
adsorption of CQat a zigzag tube edge is much stronger than tha could lead to selective etching of zigzag tubes. To understand the

at an armchair edge with an adsorption energy 8f51 (5.82— desorption process more clearly, we calculated a concerted desorp-

IKorea Advanced Institute of Science and Technology. tion pathway, as shown in Figure 2. We started from the most stable
Sungkyunkwan University. : ; ; ; ; ;

§ Also with Technology division, Samsung SDI Company, Limited, Suwon, 442- Conﬁgur?‘tlon as shown m_Flgure 1b. Considering that the lowest
390, Korea. unoccupied molecular orbital (LUMO) was located on the carbon
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937 K for this etching process from the Readhead equétidhe
distinctive selectivity observed in the adsorption of &0 SWNTs
is rarely seen in adsorptions of other molecules containing oxygen
atoms such as £3° CO, NO, NQ.16.17

In summary, the result from density functional calculations
provides a clue to the control of the electronic properties of single-
wall carbon nanotubes. GQnolecule physisorbs on an armchair
tube edge, whereas it chemisorbs strongly on a zigzag tube edge
with large adsorption energy 6f4.82 eV (GGA). We propose that
annealing with ambient CQyas can lead to selective etching with
initial CO desorption, followed by subsequent CO desorption from
the tube edge. Using this process we can obtain only armchair tubes.
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"L'liﬁ;?ﬂ' densities of (a) HOMO and (b) LUMO. The (10,0) nanotube when
CQ; is adsorbed as in Figure 1b (PDF). This material is available free
of charge via the Internet at http:/pubs.acs.org.
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